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K E Y   P O INT   S

•		 Machine learning (ML) approaches 
for clinical flow cytometry (FC) 
data can automatically and 
accurately distinguish acute 
leukemias from nonneoplastic 
cytopenias.

•		 ML approaches can accurately 
classify FC data using 
substantially fewer markers than 
currently employed and may help 
streamline antibody panels.

•		 Our ML approach differs from 
others recently proposed in that 
it preserves the full spectrum 
of FC data without employing 
dimensionality reduction.
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A B S TRACT   

Objectives:  Flow cytometry (FC) is critical for the diagnosis and monitoring of hema-
tologic malignancies. Machine learning (ML) methods rapidly classify multidimensional 
data and should dramatically improve the efficiency of FC data analysis. We aimed to build 
a model to classify acute leukemias, including acute promyelocytic leukemia (APL), and 
distinguish them from nonneoplastic cytopenias. We also sought to illustrate a method to 
identify key FC parameters that contribute to the model’s performance. 

Methods:  Using data from 531 patients who underwent evaluation for cytopenias and/
or acute leukemia, we developed an ML model to rapidly distinguish among APL, acute 
myeloid leukemia/not APL, acute lymphoblastic leukemia, and nonneoplastic cytopenias. 
Unsupervised learning using gaussian mixture model and Fisher kernel methods were 
applied to FC listmode data, followed by supervised support vector machine classification.

Results:  High accuracy (ACC, 94.2%; area under the curve [AUC], 99.5%) was achieved 
based on the 37-parameter FC panel. Using only 3 parameters, however, yielded similar 
performance (ACC, 91.7%; AUC, 98.3%) and highlighted the significant contribution of light 
scatter properties.

Conclusions:  Our findings underscore the potential for ML to automatically identify and 
prioritize FC specimens that have critical results, including APL and other acute leukemias.

INTR    O D U CTI   O N

Flow cytometry (FC) immunophenotypic analysis is a critical component of testing to estab-
lish precise diagnoses for hematolymphoid neoplasms and monitor therapeutic response.1-3 
Computational methods to evaluate cytometry data have been evolving for exploratory and 
discovery research,4,5 but with the exception of tools that the EuroFlow Consortium has 
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developed,6,7 clinical software has primarily provided a user inter-
face an analyst can use to manually inspect and manipulate data 
displayed on 2-dimensional plots through a complex, sequential 
gating process.8 Because this approach is labor intensive, heavily 
dependent on specialized expertise, and difficult to standardize, 
data analysis has become a rate-limiting factor for providing the 
FC interpretations needed for patient care. A solution for this bot-
tleneck would increase laboratory efficiency and permit more rapid 
diagnoses of acute leukemias and other hematologic malignancies.

Artificial intelligence (AI), including machine learning (ML), 
has the potential to substantially assist physicians caring for 
patients with hematolymphoid diseases with interpreting and 
using complex data for diagnosis, risk stratification, and response 
prediction.9,10 ML models have demonstrated human-level per-
formance using FC data to classify B-cell neoplasms11,12 and de-
tect residual leukemia.13,14 Our ML approach to rapidly classifying 
FC data (~7 seconds) predicted residual acute myeloid leukemia 
(AML) and myelodysplastic syndrome (MDS) with promising ac-
curacy (84.6%-92.4%) and was associated with survival.14 Whether 
a similar approach could be used to distinguish leukemic from 
nonneoplastic bone marrow samples and to rapidly distinguish 
acute promyelocytic leukemia (APL) from AML and acute lympho-
blastic leukemia (ALL) was uncertain.

To further investigate the application of ML approaches using 
clinical FC data, we aimed to build a model to classify acute leu-
kemias, including APL, and distinguish them from nonneoplastic 
cytopenias. We also sought to illustrate a method to identify key FC 
parameters that contribute to the model’s performance. Our find-
ings highlight the potential for AI to support clinical FC laboratories 
to efficiently detect and classify hematolymphoid neoplasms.

M ATERIAL       S  AN  D   M ET  H O D S

Case Selection and Ground-Truth Diagnostic Categories
This retrospective study was approved by the Institutional Re-
view Board of the University of Pittsburgh and the Research Eth-
ics Committee of National Taiwan University Hospital. Cases in-
cluded were bone marrow specimens analyzed by the clinical FC 
laboratory with new diagnoses of APL, AML/not APL, and ALL and 
from patients with no history of hematolymphoid neoplasia who 
were evaluated for recent pancytopenia and whose bone marrow 
was negative for neoplasia (ie, nonneoplastic cytopenias). Cases 
were included if the 5-tube panel of markers for new acute leuke-
mia had been performed (Supplemental Table S1 [all supplemen-
tal materials can be found at American Journal of Clinical Pathol-
ogy online]) and if the bone marrow morphologic evaluation had 
been performed at UPMC Presbyterian. Patients with APL were 
diagnosed between January 2013 and December 2018, while the 
others had been evaluated between January 2015 and May 2018. 
The ground-truth diagnoses were determined by review of the 
bone marrow pathology reports, including morphologic eval-
uation, manual FC data interpretation, chromosome analysis 
(98% of cases), any other cytogenetic or molecular studies (eg, 
myeloid panel next-generation sequencing, other mutational 

studies), other relevant pathology reports, and electronic health 
records. Acute leukemia cases were excluded if patients received 
therapy beyond supportive care for a preceding myeloid neo-
plasm (eg, MDS) or if the diagnosis was mixed-phenotype acute 
leukemia. For nonneoplastic cytopenias, patients with current or 
prior overt hematolymphoid neoplasms according to the World 
Health Organization classification15 were excluded, but those 
with monoclonal B-cell lymphocytosis were not.

FC Immunophenotypic Studies
FC data had been acquired predominantly on 1 of 2 FACSCanto 
II instruments (BD Biosciences); rare cases (1.5%) were acquired 
on a third FACSCanto II instrument. Initial instrument setup, 
according to standard procedures, used BD CompBeads (BD Bi-
oscience) for fluorescent parameters and a normal peripheral 
blood specimen for light scatter parameters. Settings for light 
scatter parameters were adjusted to achieve optimal separa-
tion for lymphocytes, monocytes, and granulocytes and further 
adjusted to ensure appropriateness for all specimen types. 
Agreement across instruments was addressed by establishing 
targets for all fluorescent channels using Cytometer Setup and 
Tracking (CS&T) beads (BD Biosciences) and transferring them 
from the predicate instrument to the others (ie, instrument 
cloning). Static light scatter gates for lymphocytes, mono-
cytes, and granulocytes from a normal peripheral blood spec-
imen were established and also applied to all instruments. At 
6-month intervals and after instrument service, voltages were 
adjusted as needed to achieve the laboratory-established tar-
gets for fluorescent channels using CS&T beads and to keep 
the initially set static light scatter gates for normal periph-
eral blood. Daily quality control (QC) included monitoring all 
channels, including for light scatter, using CS&T beads and 
using BD FACS 7-color setup beads (BD Biosciences). If a 20 V 
or more change was predicted for any channel, an instrument 
was serviced. Levy-Jennings plots were also monitored for all 
channels. Daily QC for light scatter parameters also included 
visual inspection to ensure appropriate scaling and separation 
for lymphocytes, monocytes, and granulocytes. Compensation, 
lot-to-lot reagent comparisons, and specimen preparation and 
staining have been previously described.16 We acquired 30,000 
events for each tube whenever possible (ie, 97.6% of cases) the 
same day as staining.

Machine Learning

Model Development
FC listmode data (Flow Cytometry Standard [FCS] version 3.1) 
was used from the 5-tube panel for new acute leukemia. We re-
garded each light scatter property and fluorescent marker as a 
unique FC parameter. Data for any parameter evaluated more 
than once in the same channel (eg, forward scatter area [FSC-
A], side scatter area  [SSC-A], CD45 V500) were aggregated and 
resampled to ensure that the same amount of data for all was 
used for model development. Consequently, the combined data 
for all 37 parameters served as the input to the ML framework; FC 
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data according to specific tubes of markers (ie, combinations of 
parameters) were not used as input to the model. Preprocessing 
of the data included compensation and z score normalization. 
The framework consisted of 2 stages inclusive of an unsupervised 
phenotype representation learning and a supervised discrim-
inative classifier. To obtain the phenotype representation, we 
trained a gaussian mixture model (GMM) to capture the complex 
cellular distribution. Then, a Fisher gradient vectorization ap-
proach was applied to embed phenotype characteristics in terms 
of the learned probability distribution in the derived specimen 
level high-dimensional phenotype representation. Each set of 
the preprocessed FCS data X ∈ RT×D was used for multivariate 
GMM training, where T was the total cell number and D was the 
number of FC parameters. The multivariate GMM was trained 
through an expectation-maximization algorithm in an unsuper-
vised manner to obtain a set of parameters λ,

� λ = ωk;µk;σk; k = 1 . . .K (1)

where ωk, µk,σk  denoted the weight, mean vector, and covariance 
vector of k-th gaussian cluster and K was a specified total number 
of mixtures. With a sufficient number of GMM clusters, the com-
plexity of the cellular composition could be completely modeled. 
We then used the Fisher kernel method to estimate the sample-wise 
posterior on the GMM parameters as a gradient scoring function,

� ∇λlogP (X | λ) (2)

where P (xt | λ) =
∑K

i=1 ωiPi (xt | λ) was the likelihood of the 

given GMM. The expansion form of Fisher scoring function in terms 
of the first and second derivatives could be written as follows:
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where P (i | xt,λ) =
ωiPi(xt | λ)∑N

j=1
ωjPj(xt | λ)  indicated the posterior 

probability for xt ∈ X . The concatenated vector of gX
µk

 and gX
σk 

was further normalized by power normalization and L2 normali-
zation for better computational efficacy. This final representation, 
the phenotype representation, had 2 × K × D dimensions. We fed 
the specimen-level representation into a support vector machine 
(SVM), with a linear kernel to conduct the 4-category classifica-
tion (APL, AML/not APL, ALL, and nonneoplastic cytopenias). The 
whole framework  FIGURE 1  was implemented in Python; the GMM 
and SVM were based on the open-source scikit-learn package. 
Hyperparameters, such as K for GMM and C for SVM, were selected 
by grid search.

Evaluation of Model Performance
We used a 5-fold cross-validation scheme, 80% of the data for train-
ing and tuning and the remaining 20% (ie, the testing set) used to 
evaluate predictions for the categories. This process was conducted 

FIGURE 1  An overall schematic diagram of the machine learning (ML) framework. A, Flow cytometry (FC) listmode data were used as input for ML, 
including 37 FC parameters (light scatter properties and fluorochrome-labeled antibody binding) that had been individually evaluated for thousands of cells 
from each patient specimen; fluorescent parameters had been obtained from 5 different combinations of antibodies (ie, tubes), with some redundancy. 
Redundant parameters evaluated by more than 1 tube were aggregated and resampled so that the same amount of data for each parameter was used 
for ML model development. B, FC data were used to train an unsupervised gaussian mixture model (GMM) and encode it into a phenotype representation 
for each specimen, with a Fisher vectorization approach. In this encoding process, a specimen’s FC data were transformed by computing the gradient 
distance with all the learned GMM cluster centers and aggregated as a specimen-level high dimensional representation (ie, vector). C, The specimen-level 
phenotype representations and their corresponding ground-truth labels were the input to train the supervised support vector machine (SVM) to classify the 
cases as acute promyelocytic leukemia (APL), acute myeloid leukemia (AML)/not APL, acute lymphoblastic leukemia (ALL), and nonneoplastic cytopenias 
(cytopenias). With the support vectors and the learned hyperplane, the multiclass prediction was performed on testing sets. D, Dimensionality reduction (ie, 
principal component analysis) was implemented on the specimen-level phenotype vectors and the decision score vectors of the SVM to illustrate the data 
distribution on a 3-dimensional plot. Each specimen was denoted as a dot, with different icons to indicate the ground-truth diagnoses.
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5 times using different data randomly assigned to the testing set. 
Accuracy (ACC) and area under the receiver operating characteristic 
curve (AUC) were the evaluation metrics of performance.

Feature Selection Analysis
Cross-channel interaction was taken into account for the feature-
selection experiments. The ACC was determined for the model 
by using each FC parameter alone to classify specimens into the 
4 categories. The parameter that permitted the highest ACC was 
then paired with the individual remaining parameters to determine 
which pair provided the highest ACC. For each subsequent step, 
we added the remaining parameters individually to determine the 
combination with the next-highest ACC. Student t test analysis was 
used to determine the significance of performance difference for 
each step.

Evaluation of Cellular Composition and 
Potential Quality Indicators
For comparison of misclassified specimens with those speci-
mens correctly classified using the ML model, proportions of 
populations out of total events were obtained from the most 
appropriate tube (Supplemental Table S2) from manual gating 
of FC data: lymphocytes, T lymphocytes, and natural killer cells 
(tube 4); B lymphocytes and hematogones (tube 3); granulocytes 
(tube 2); monocytic cells and erythroid cells (tube 1); and blasts 
(hematogones excluded) for nonneoplastic cytopenia cases (tube 
1)  and for APL (tube 2). Unless better isolated in another tube, 
blasts were from tube 3 for B-cell ALL (B-ALL) and tube 4 for T-cell 
ALL (T-ALL). The blasts for AML/not APL were from tube 1 un-
less better isolated by tube 2; monocytic cells were included with 
blasts for AML/not APL that had monocytic differentiation. AML/
not APL “with monocytic differentiation” was recognized when 
supported by review of the bone marrow pathology report and 
other components that contributed to the final clinicopathologic 
diagnosis, which were reviewed in particular whenever monocytes 
were found to be 10% or more of the total events by manual FC 
data analysis. Percentages were obtained from dot plots created 
with BD FACSDiva v7.0, v8.0 (7/2013 - 8/2014), v8.0.1 (9/2014 - 
12/2018) software (BD Biosciences) except when better isolated 
using Infinicyt software, version 2.0 (Cytognos): blasts and gran-
ulocytes for AML/not APL and APL, monocytic cells for AML/not 
APL, and erythroid cells for all specimens. Singlet cells were an av-
erage from the 5 tubes using FSC-A vs FSC height dot plots. Viable 
cells were those not staining for 7-aminoactinomycin D.

Three potential specimen quality indicators were also compiled. 
“Hypocellular BM biopsy” was defined as a bone marrow biopsy 
reported as adequate for interpretation with 20% or less cellularity. 
A  designation of “less than optimal aspirate smears” was applied 
when the pathology report indicated that the smears were “inade-
quate,” “limited,” or “suboptimal.” A “gross % blast underestimate 
by FC” was recorded when the aspirate smear manual differential 
blast percentage was 20% or more in the pathology report and the 
% blasts by manual FC data analysis was lower by a relative differ-
ence of 40%; no assessment was made when aspirate smears were 
reported as inadequate.

Continuous variables across groups were analyzed using the 
Kruskal-Wallis test, followed, when appropriate, by the Dunn mul-
tiple comparisons test. Categorical variables were analyzed using 
the χ 2 test and, when appropriate, the Fisher exact test. Statistical 
analyses were performed using GraphPad Prism software, version 
8.0.1.

RE  S U LT  S

Diagnostic Categories
FC data were originally obtained as part of the clinical evaluation 
of bone marrow specimens from 531 patients with a new diagnosis 
of APL (n = 32 [6.0%]), AML/not APL (n = 200 [37.7%]), ALL (n = 131 
[24.7%]; B-ALL, n  =  118; T-ALL, n  =  13) and patients evaluated 
for potential acute leukemia because of recent pancytopenia but 
whose comprehensive bone marrow evaluation was negative for 
hematolymphoid neoplasm (ie, nonneoplastic cytopenias, n  =  168 
[31.6%]). CBC data, manual differential blast percentages, % blasts 
by manual FC data analysis, and potential factors associated with 
specimen quality were summarized for the 4 categories  TABLE 1 .

ML Model Performance
The ML model classified FC list mode data into 4 categories, corre-
sponding to the ground-truth diagnoses  FIGURE 1 . Performance was 
assessed in 5 rounds, with different data randomly held out to serve 
as testing sets (Supplemental Table S3). while classification of the 
whole data set using all 37 FC parameters, including light scatter prop-
erties and fluorescence, demonstrated 94.2% ACC and 99.5% AUC. 
For each category, the individual ACC ranged from 87.5% to 97.6%, 
sensitivity ranged from 87.5% to 97.6%, and specificity ranged from  
95.6% to 100.0%  FIGURE 2 .

Feature Selection Analysis
The ML model ACC ranged from 47.5% to 77.0% when the 37 FC 
parameters were evaluated individually (Supplemental Table 
S4). The parameter yielding the highest ACC was then paired 
with each remaining parameter to determine which pair pro-
vided the highest ACC. Subsequent parameters were added indi-
vidually according to the ACC of the combinations (Supplemen-
tal Figure S1). Model performance improved with each step (P < 
.001) up to 3 parameters (FSC-A, SSC height [SSC-H], CD117), but 
no significant improvement was gained by adding more mark-
ers, and there was no significant difference in the model’s per-
formance when using the full marker set and any other number 
of markers beyond the top 3.  The top 3 parameters produced a 
performance (ACC, 91.7%; AUC, 98.3%) similar to that achieved 
for all 37 samples. The findings underscored the significant con-
tribution of light scatter properties to model performance.

Specimens Misclassified by the ML Model
A total of 31 of 531 (5.8%) specimens were misclassified. Because 
numbers misclassified from one specific category into another were 
low  TABLE 2 , comparisons with correctly classified specimens were 
precluded. However, a somewhat larger group of misclassified spe-
cimens (n  =  16) was assembled for comparisons by combining all 
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acute leukemias misclassified as nonneoplastic cytopenias (AML/
not APL, n = 9; ALL, n = 5; APL, n = 2).

The percentages of major hematolymphoid populations deter-
mined by manual FC data analysis were compared between the 

combined group of acute leukemias misclassified as nonneoplastic 
cytopenias and the 4 groups consisting of only correctly classified spe-
cimens (Supplemental Table S2). The acute leukemias misclassified as 
nonneoplastic cytopenias had lower proportions of blasts compared 

TABLE 1  Attributes of Cases According to Ground-Truth Diagnosis: CBCs, % Blasts by Manual Differentials, % Blasts by Manual Flow Cytometry Data 
Analysis, and Potential Specimen Quality Indicators

AML/Not APL APL ALL
Nonneoplastic 
Cytopenias

Cases, No. (%) 200 (37.7) 32 (6.0) 131 (24.7) 168 (31.6)

CBCa     

  WBC, ×103/µL 7.8 (2.2-30.1) 2.4 (1.5-13.1) 9.5 (3.7-25.8) 2.4 (1.8-3.2)

  Hemoglobin, g/dL 8.9 (7.9-10.0) 9.5 (8.2-10.9) 8.9 (7.8-10.1) 9.4 (8.2-10.9)

  MCV, fL 95.8 (90.6-100.9) 89.4 (86.2-92.2) 85.3 (81.0-89.0) 90.6 (85.2-97.6)

  Platelet count, ×103/µL 56.0 (29.0-98.2) 27.0 (14.0-57.5) 66.0 (38.0-114.5) 72 (46.0-104.0)

Manual differential, peripheral blooda     

  Blasts, % 27.0 (9.9-58.0) 55.0 (10.5-74.5) 48.8 (12.2-72.6) 0.0 (0.0-0.0)

Manual differential, bone marrowa     

  Blasts, % 58.0 (34.0-77.4) 81.0 (71.8-84.0) 90.0 (84.3-94.0) 1.0 (0.6-1.8)

Flow cytometry, bone marrowa     

  Blasts, % 50.0 (30.8-73.2) 84.0 (73.0-87.2) 82.0 (65.6-90.0) 0.8 (0.4-1.3)

Potential specimen quality indicators, present/not presentb     

  Hypocellular bone marrow biopsy 3/185c 0/32d 1/123e 25/137c,d,e

  Less-than-optimal aspirate smears 40/160 3/29 28/103 25/143

  Gross % blast underestimate by FC 22/173 3/29 16/114 NA

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; FC, flow cytometry, MCV, mean corpuscular volume; NA, not applicable.
aData shown as median (25th to 75th percentiles).
bPotential quality indicators were compared between groups using χ 2 test and were significantly different only for hypocellular bone marrow biopsies (P < .0001). Fisher exact tests 

revealed that hypocellular bone marrow biopsy was more common for nonneoplastic cytopenias compared with 
cAML/not APL (P < .0001), 
dAPL (P = .017), and 
eALL (P < .0001).

FIGURE 2  Performance of the machine learning (ML) model for classification of acute leukemias and distinction from nonneoplastic cytopenias. The ML 
model was trained to classify patients’ flow cytometry data into 4 categories corresponding to the ground-truth diagnoses: acute promyelocytic leukemia 
(APL), acute myeloid leukemia (AML)/not APL, acute lymphoblastic leukemia (ALL), and nonneoplastic cytopenias (cytopenias). A, Classification accuracy 
of the final ML model for each category using the whole data set was depicted by a confusion matrix; sensitivity and specificity for each predicted category 
were also determined. B, Dimensionality reduction using principal component analysis was performed to depict the data output distribution of the model on 
a 3-dimensional plot; the ground-truth diagnosis was denoted with different icons.
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with all 3 groups of correctly classified acute leukemias (median, 16% 
vs 84% [APL], 52% [AML/not APL], 84% [ALL]; P < .05 for all 3 com-
parisons). They also had higher proportions of lymphocytes compared 
with the correctly classified acute leukemias (median, 30% vs 7% [APL], 
11% [AML/not APL], 6% [ALL]; P < .05 for all 3 comparisons).

No significant difference was found between the distribution 
for flow cytometers 1, 2, and 3 used for data acquisition for correctly 
classified (63.2%, 35.2%, 1.6%) and incorrectly classified specimens 
(64.5%, 35.5%, 0%).

Because rapid, accurate detection of APL is so important, obser-
vations about misclassification were specifically sought for this cate-
gory. No specimens were misclassified as APL. No APL was misclassi-
fied as ALL, but 4 of 32 (12.5%) specimens were misclassified as either 
nonneoplastic cytopenias (n = 2) or AML/not APL (n = 2)  TABLE 2 . 
The 2 samples misclassified as nonneoplastic cytopenias were sim-
ilar to the larger assembled group of acute leukemias misclassified 
as such because they had low proportions of blasts based on manual 
FC data analysis (ie, 8% and 18%, respectively). The other 2 that were 
misclassified had 70% and 87% blasts, respectively, and no obvious 
reason for misclassification as AML/not APL.

Among AML/not APL cases, 58 of 200 had monocytic dif-
ferentiation (29%). There was no difference in the model’s 
performance between those with or without monocytic differ-
entiation. Two of 58 with monocytic differentiation and 10 of 
142 without monocytic differentiation were misclassified (ACC, 
96.6 vs 92.9%; P  =  .5147). Both AML/not APL specimens with 
monocytic differentiation were misclassified as nonneoplastic 
cytopenias, and 1 was similar to the overall larger assembled 
group of acute leukemias so misclassified because of a low 
proportion of blasts by manual FC data analysis (16%), despite 
63% blasts on the aspirate smear differential. Neither had good 
reason to consider chronic myelomonocytic leukemia (CMML) 
as an alternative diagnosis. Among correctly classified AML/
not APL with monocytic differentiation cases, only 1 with 20% 
blasts/promonocytes was difficult to distinguish from CMML, 
while another patient had been under observation for previ-
ously diagnosed CMML when he presented with 51% blasts in 
the bone marrow morphologically.

Three Potential Specimen Quality Indicators 
and Impact on ML Model Performance
A hypocellular bone marrow biopsy was more common for 
nonneoplastic cytopenias compared with all 3 acute leuke-
mias  TABLE 1 , but no differences were found among the 4 categories 
based on “less than optimal aspirate smears” or, among the acute 
leukemia categories, based on “gross % blast underestimate by FC” 
with reference to the aspirate smear manual differential.

Acute leukemias misclassified as nonneoplastic cytopenias were 
more often associated with a “gross % blast underestimate by FC” 
compared with correctly classified APL, AML/not APL, and ALL 
(78.6% of the specimens vs 3.6%, 8.7%, and 9.2%, respectively; P < 
.0001 for all 3 comparisons). Both APL specimens misclassified as 
nonneoplastic cytopenias and the AML/not APL with monocytic dif-
ferentiation case with a low proportion of blasts also so misclassified 
met criteria for “gross % blast underestimate by FC.”

Abnormal Populations in Addition to Acute Leukemia
Abnormal B-cell populations other than acute leukemia were de-
tected in 20 of 531 cases (3.8%). Only 1 of these specimens was 
among those misclassified by the ML model. Chronic lymphocytic 
leukemia/small lymphocytic lymphoma (38% of total events) and 
another B-cell–lineage lymphoproliferative disorder (53% of total 
events) were detected in 2 patients with AML/not APL. The latter 
case was misclassified as nonneoplastic cytopenias but was also 
noted to have only 9% blasts by FC. Light chain restricted B cells 
(≤12% of total events) suggesting monoclonal B-cell lymphocytosis 
were identified in 8 patients with AML/not APL, 2 with ALL, and 8 
with nonneoplastic cytopenias.

D I S C U S S I O N

Our ML model, developed for bone marrow specimens originally 
obtained to evaluate for potential new acute leukemia, demon-
strated excellent performance (ACC, 94.2%; AUC, 99.5%) to rap-
idly classify FC data into 4 categories (APL, AML/not APL, ALL, 
and nonneoplastic cytopenias). The model achieved this accuracy 
using the complete FC panel for new acute leukemia but also 

TABLE 2  Number of Specimens Misclassified by Machine Learning Model

Correct Category, No. No. Misclassified (% of Diagnostic Category) Incorrect Classifications

AML/not APL (n = 200) 12 (6) ALL (n = 3)

Nonneoplastic cytopenias (n = 9)

APL (n = 32) 4 (12.5) AML/not APL (n = 2)

Nonneoplastic cytopenias (n = 2)

ALL (n = 131) 11 (8.4) —

B-cell lymphoblastic leukemia (n = 118) 9 (7.6) AML/not APL (n = 4)

Nonneoplastic cytopenias (n = 5)

T-cell lymphoblastic leukemia (n = 13) 2 (15.4) AML/not APL (n = 2)

Nonneoplastic cytopenias (n = 168) 4 (2.4) AML/not APL (n = 3)

ALL (n = 1)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia.
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demonstrated similar performance with only 3 FC parameters. The 
findings suggested that an ML approach could serve as an auto-
mated triage tool to rapidly identify and prioritize FC results for he-
matologic malignancies, including APL and other acute leukemias.

Computational and ML algorithms for FC data interpreta-
tion17 and morphologic image analysis18 proposed specifically for 
hematolymphoid disorders have been reviewed and include some 
designed to assist in acute leukemia diagnosis. The potential of 
morphologic image analysis for acute leukemia classification 
has been demonstrated.19 Using FC data, 87% of 23 algorithms 
achieved greater than 97% ACC when challenged to distinguish 
AML from healthy donors.20 Although that finding was published 
8  years ago, adoption of computational tools in clinical labora-
tories has remained low.7 Infinicyt software, supported by the 
EuroFlow Consortium, has provided the computational tools 
most commonly used for clinical FC testing.7 Infinicyt offers par-
tially automated gating for a small number of FC panels, including 
an acute leukemia orientation tube (ALOT), along with tools to 
determine whether populations match those within their data-
base.6,21 For ALOT analysis, Infinicyt recommends the subsequent 
panel for full characterization (ie, AML, T-ALL, or B-ALL panel) 
or indicates that a manual decision is needed. Despite multiple 
other methods,22,23 population clustering or automated gating 
alone typically requires substantial human interaction to review 
populations before interpretation. However, methods to cluster 
or model FC data, followed by supervised ML (SML) classifica-
tion, can provide more automated results for diagnostic category, 
residual disease status, or outcome prediction.11,12,14,24 Our  prior 
study used such an approach to identify specimens with residual 
AML and MDS.14 We adapted those methods for the current study 
to detect and classify new acute leukemias.

Our method applied unsupervised representative learning with 
an integrated use of generative probabilistic GMM to provide an over-
all representation of individual patient FC data and the Fisher kernel 
method to express the degree of difference between patients. We then 
used a supervised SVM classifier to maximize discrimination between 
nonneoplastic cytopenias and 3 acute leukemia categories. In this par-
adigm, the discriminative power from the Fisher scoring–based pheno-
type vector enhanced the capacity of the linear SVM classifier. Different 
methods to model clinical FC data, followed by other SML classifiers, 
have been used to classify subtypes of mature B-cell neoplasms and 
healthy samples11 and to detect B-cell neoplasms with good accuracy, 
identify specimens that need add-on markers, and show the potential 
to autoverify normal results.12 Zhao et al11 used self-organizing maps, 
followed by a deep convolutional neural network as the classifier. Ng 
et al12 used FC data from their B-cell screening panel as input for uni-
form manifold approximation and projection, a method related to t 
distributed stochastic neighbor embedding, followed by a random for-
est classifier. Unlike our approach, the methods in those 2 studies used 
dimensionality reduction of FC data with inherent loss of information.

Evaluation of each FC parameter’s contribution to model  
performance in this study demonstrated improvements up to a 
combination of 3 parameters (FSC-A, SSC-H, CD117) but no fur-
ther significant improvements with more. There was no significant 

difference in performance when using the full set of parameters 
and any number of markers beyond the top 3, which implied that 
the learned SVM classifier tended to be robust and did not dramati-
cally change or overfit because of different feature dimensions. The 
results illustrated the high contribution of light scatter properties 
and raised the possibility that a simplified screening method for 
hematologic malignancy based primarily on light scatter properties 
might be feasible; however, this hypothesis remains to be explored. 
Importantly, unlike a simplified screening method, the minimum 
number of markers needed for an ML model to classify data could 
not be the only consideration for panels intended to contribute to 
definitive FC interpretations. For example, the best 3-parameter 
combination in our study would be completely inadequate for a 
human analyst to render an interpretation. Optimization of such 
panels to be used with ML classification would need to take into 
account the data laboratory professionals need to catch errors, 
manage data classified into broad or indeterminate categories, and 
render timely, conclusive interpretations.

Given the importance of preventing errors for patient testing, we 
tried to identify features associated with risk for misclassification. 
We found a low proportion of blasts and evidence that suboptimal, 
hemodilute specimens contribute to misclassification of acute leuke-
mias, including 2 of the 4 misclassified APL specimens, as nonneoplastic. 
Increasing the number of specimens to train the model could potentially 
improve performance, particularly for the underrepresented APL cate-
gory. Augmenting model training with more acute leukemia cases with 
low blast counts and/or training the model to recognize hemodilute 
specimens would also have the potential to further improve perfor-
mance. Otherwise, the numbers of specimens misclassified from one 
individual category into another were too low to identify commonalities 
to help understand why they were misclassified. Further understand-
ing of additional factors that contribute to misclassification would be 
important before implementing an ML approach clinically. Although 
understanding how ML models learn to make predictions is difficult,10 it 
is a growing area of research.25

Although our study demonstrated that an ML model could 
distinguish among 3 categories of acute leukemia involving bone 
marrow and nonneoplastic cytopenias, clinical laboratories en-
counter a much broader spectrum of hematologic malignancies15 
and specimen types. For example, 3.8% of our specimens harbored 
abnormal populations beyond acute leukemia, which our model 
was not trained to detect. We did not train the model to detect 
or classify myeloid neoplasms other than AML, and we excluded 
acute leukemias of ambiguous lineage. The model would need to be 
trained to classify more categories, but an indeterminate category 
could be used for less frequent conditions until sufficient specimens 
were accrued for additional specific categories. An ML model would 
also need to be trained for other specimen types (eg, blood, lymph 
nodes, body fluids) for which it would be used.

In this study, we did not evaluate the degree of standardi-
zation needed for the model to be implemented across multiple 
laboratories. For example, decision support tools available with 
Infinicyt rely on strictly standardized antibody panels, speci-
men processing, and instrument settings.6 Two aspects of our 
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approach may permit sufficient flexibility for the model to be 
applied across institutions. First, preprocessing the FC data 
before model input includes compensation and normalization. 
First, z score normalization takes into account statistical char-
acteristics (mean and SD) of the FC data and helps offset varia-
tions for light scatter and fluorescent intensities.26 Second, we 
anticipate that the use of GMM to capture the phenotypic rep-
resentation for each specimen in a probabilistic manner27 may 
permit us to apply our approach to those distributions derived 
for similar parameters across institutions without extreme 
stringency related to antibody panels, specimen processing, 
and instrument settings. One of our major upcoming goals is 
to obtain a large multicenter database to further evaluate these 
potential solutions and determine the minimum level of stand-
ardization needed to successfully generalize our approach.

The ML model we developed demonstrated excellent perfor-
mance to rapidly classify real-world FC data into 4 categories for 
patients evaluated for potential acute leukemia. It accomplished 
this success with substantially fewer FC markers than currently 
exist in our new acute leukemia panel. These results can be used to 
help design AI-based decision support tools to address the wider 
spectrum of conditions clinical laboratories encounter. Anticipating 
further development and multicenter studies to evaluate the gener-
alizability of such an approach, we are optimistic that AI-assisted 
decision support will lead to greater efficiency and increase patient 
access to fast and accurate diagnoses for hematologic malignancies.
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