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ABSTRACT

Objectives: Flow cytometry (FC) is critical for the diagnosis and monitoring of hema-
tologic malignancies. Machine learning (ML) methods rapidly classify multidimensional
data and should dramatically improve the efficiency of FC data analysis. We aimed to build
amodel to classify acute leukemias, including acute promyelocytic leukemia (APL), and
distinguish them from nonneoplastic cytopenias. We also sought to illustrate a method to

identify key FC parameters that contribute to the model’s performance.

Methods: Using data from 531 patients who underwent evaluation for cytopenias and/
or acute leukemia, we developed an ML model to rapidly distinguish among APL, acute
myeloid leukemia/not APL, acute lymphoblastic leukemia, and nonneoplastic cytopenias.
Unsupervised learning using gaussian mixture model and Fisher kernel methods were

applied to FC listmode data, followed by supervised support vector machine classification.

Results: High accuracy (ACC, 94.2%; area under the curve [AUC], 99.5%) was achieved
based on the 37-parameter FC panel. Using only 3 parameters, however, yielded similar
performance (ACC, 91.7%; AUC, 98.3%) and highlighted the significant contribution of light
scatter properties.

Conclusions: Our findings underscore the potential for ML to automatically identify and
prioritize FC specimens that have critical results, including APL and other acute leukemias.

INTRODUCTION

Flow cytometry (FC) immunophenotypic analysis is a critical component of testing to estab-
lish precise diagnoses for hematolymphoid neoplasms and monitor therapeutic response."”
Computational methods to evaluate cytometry data have been evolving for exploratory and

discovery research,”® but with the exception of tools that the EuroFlow Consortium has
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KEY POINTS

e Machine learning (ML) approaches
for clinical flow cytometry (FC)
data can automatically and
accurately distinguish acute
leukemias from nonneoplastic
cytopenias.

e ML approaches can accurately
classify FC data using
substantially fewer markers than
currently employed and may help
streamline antibody panels.

e QOur ML approach differs from
others recently proposed in that
it preserves the full spectrum
of FC data without employing
dimensionality reduction.
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developed,®’ clinical software has primarily provided a user inter-
face an analyst can use to manually inspect and manipulate data
displayed on 2-dimensional plots through a complex, sequential
gating process.® Because this approach is labor intensive, heavily
dependent on specialized expertise, and difficult to standardize,
data analysis has become a rate-limiting factor for providing the
FC interpretations needed for patient care. A solution for this bot-
tleneck would increase laboratory efficiency and permit more rapid
diagnoses of acute leukemias and other hematologic malignancies.

Artificial intelligence (AI), including machine learning (ML),
has the potential to substantially assist physicians caring for
patients with hematolymphoid diseases with interpreting and
using complex data for diagnosis, risk stratification, and response

9,10

prediction.”” ML models have demonstrated human-level per-

formance using FC data to classify B-cell neoplasms™” and de-

. .13
tect residual leukemia.”"

Our ML approach to rapidly classifying
FC data (~7 seconds) predicted residual acute myeloid leukemia
(AML) and myelodysplastic syndrome (MDS) with promising ac-
curacy (84.6%-92.4%) and was associated with survival."* Whether
a similar approach could be used to distinguish leukemic from
nonneoplastic bone marrow samples and to rapidly distinguish
acute promyelocytic leukemia (APL) from AML and acute lympho-
blastic leukemia (ALL) was uncertain.

To further investigate the application of ML approaches using
clinical FC data, we aimed to build a model to classify acute leu-
kemias, including APL, and distinguish them from nonneoplastic
cytopenias. We also sought to illustrate a method to identify key FC
parameters that contribute to the model’s performance. Our find-
ings highlight the potential for Al to support clinical FC laboratories
to efficiently detect and classify hematolymphoid neoplasms.

MATERIALS AND METHODS

Case Selection and Ground-Truth Diagnostic Categories

This retrospective study was approved by the Institutional Re-
view Board of the University of Pittsburgh and the Research Eth-
ics Committee of National Taiwan University Hospital. Cases in-
cluded were bone marrow specimens analyzed by the clinical FC
laboratory with new diagnoses of APL, AML/not APL, and ALL and
from patients with no history of hematolymphoid neoplasia who
were evaluated for recent pancytopenia and whose bone marrow
was negative for neoplasia (ie, nonneoplastic cytopenias). Cases
were included if the 5-tube panel of markers for new acute leuke-
mia had been performed (Supplemental Table S1 [all supplemen-
tal materials can be found at American Journal of Clinical Pathol-
ogy online]) and if the bone marrow morphologic evaluation had
been performed at UPMC Presbyterian. Patients with APL were
diagnosed between January 2013 and December 2018, while the
others had been evaluated between January 2015 and May 2018.
The ground-truth diagnoses were determined by review of the
bone marrow pathology reports, including morphologic eval-
uation, manual FC data interpretation, chromosome analysis
(98% of cases), any other cytogenetic or molecular studies (eg,

myeloid panel next-generation sequencing, other mutational
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studies), other relevant pathology reports, and electronic health
records. Acute leukemia cases were excluded if patients received
therapy beyond supportive care for a preceding myeloid neo-
plasm (eg, MDS) or if the diagnosis was mixed-phenotype acute
leukemia. For nonneoplastic cytopenias, patients with current or
prior overt hematolymphoid neoplasms according to the World
Health Organization classification” were excluded, but those

with monoclonal B-cell lymphocytosis were not.

FC Immunophenotypic Studies

FC data had been acquired predominantly on 1 of 2 FACSCanto
IIinstruments (BD Biosciences); rare cases (1.5%) were acquired
on a third FACSCanto II instrument. Initial instrument setup,
according to standard procedures, used BD CompBeads (BD Bi-
oscience) for fluorescent parameters and a normal peripheral
blood specimen for light scatter parameters. Settings for light
scatter parameters were adjusted to achieve optimal separa-
tion for lymphocytes, monocytes, and granulocytes and further
adjusted to ensure appropriateness for all specimen types.
Agreement across instruments was addressed by establishing
targets for all fluorescent channels using Cytometer Setup and
Tracking (CS&T) beads (BD Biosciences) and transferring them
from the predicate instrument to the others (ie, instrument
cloning). Static light scatter gates for lymphocytes, mono-
cytes, and granulocytes from a normal peripheral blood spec-
imen were established and also applied to all instruments. At
6-month intervals and after instrument service, voltages were
adjusted as needed to achieve the laboratory-established tar-
gets for fluorescent channels using CS&T beads and to keep
the initially set static light scatter gates for normal periph-
eral blood. Daily quality control (QC) included monitoring all
channels, including for light scatter, using CS&T beads and
using BD FACS 7-color setup beads (BD Biosciences). If a 20 V
or more change was predicted for any channel, an instrument
was serviced. Levy-Jennings plots were also monitored for all
channels. Daily QC for light scatter parameters also included
visual inspection to ensure appropriate scaling and separation
for lymphocytes, monocytes, and granulocytes. Compensation,
lot-to-lot reagent comparisons, and specimen preparation and
staining have been previously described.' We acquired 30,000
events for each tube whenever possible (ie, 97.6% of cases) the
same day as staining.

Machine Learning

Model Development

FC listmode data (Flow Cytometry Standard [FCS] version 3.1)
was used from the 5-tube panel for new acute leukemia. We re-
garded each light scatter property and fluorescent marker as a
unique FC parameter. Data for any parameter evaluated more
than once in the same channel (eg, forward scatter area [FSC-
A], side scatter area [SSC-A], CD45 V500) were aggregated and
resampled to ensure that the same amount of data for all was
used for model development. Consequently, the combined data

for all 37 parameters served as the input to the ML framework; FC
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data according to specific tubes of markers (ie, combinations of
parameters) were not used as input to the model. Preprocessing
of the data included compensation and z score normalization.
The framework consisted of 2 stages inclusive of an unsupervised
phenotype representation learning and a supervised discrim-
inative classifier. To obtain the phenotype representation, we
trained a gaussian mixture model (GMM) to capture the complex
cellular distribution. Then, a Fisher gradient vectorization ap-
proach was applied to embed phenotype characteristics in terms
of the learned probability distribution in the derived specimen
level high-dimensional phenotype representation. Each set of
the preprocessed FCS data X € R7*P \yas used for multivariate
GMM training, where T was the total cell number and D was the
number of FC parameters. The multivariate GMM was trained
through an expectation-maximization algorithm in an unsuper-
vised manner to obtain a set of parameters A,

where P (x, | \) = ; (x; | A) was the likelihood of the

K
>i=1 wiP
given GMM. The expansion form of Fisher scoring function in terms

of the first and second derivatives could be written as follows:

g = w}kéw«) (=)

®)

& mZ% (( k“")—l) @
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probability for x; € X. The concatenated vector of gM and gak

where indicated the posterior
was further normalized by power normalization and L2 normali-
zation for better computational efficacy. This final representation,

the phenotype representation, had 2 x K x D dimensions. We fed

the specimen-level representation into a support vector machine
0 (SVM), with a linear kernel to conduct the 4-category classifica-
tion (APL, AML/not APL, ALL, and nonneoplastic cytopenias). The
whole framework [FIEVE=R] was implemented in Python; the GMM
and SVM were based on the open-source scikit-learn package.

A=wisonk=1...K

where Wk, Uk, 0 denoted the weight, mean vector, and covariance

vector of k-th gaussian cluster and K was a specified total number
. . . Hyperparameters, such as K for GMM and C for SVM, were selected
of mixtures. With a sufficient number of GMM clusters, the com- .
. . by grid search.
plexity of the cellular composition could be completely modeled.

We then used the Fisher kernel method to estimate the sample-wise Evaluation of Model Performance

posterior on the GMM parameters as a gradient scoring function, We used a 5-fold cross-validation scheme, 80% of the data for train-
ing and tuning and the remaining 20% (ie, the testing set) used to

VlogP (X | A) () evaluate predictions for the categories. This process was conducted
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FIGURE 1 An overall schematic diagram of the machine learning (ML) framework. A, Flow cytometry (FC) listmode data were used as input for ML,
including 37 FC parameters (light scatter properties and fluorochrome-labeled antibody binding) that had been individually evaluated for thousands of cells
from each patient specimen; fluorescent parameters had been obtained from 5 different combinations of antibodies (ie, tubes), with some redundancy.
Redundant parameters evaluated by more than 1 tube were aggregated and resampled so that the same amount of data for each parameter was used
for ML model development. B, FC data were used to train an unsupervised gaussian mixture model (GMM) and encode it into a phenotype representation
for each specimen, with a Fisher vectorization approach. In this encoding process, a specimen’s FC data were transformed by computing the gradient
distance with all the learned GMM cluster centers and aggregated as a specimen-level high dimensional representation (ie, vector). C, The specimen-level
phenotype representations and their corresponding ground-truth labels were the input to train the supervised support vector machine (SVM) to classify the
cases as acute promyelocytic leukemia (APL), acute myeloid leukemia (AML)/not APL, acute lymphoblastic leukemia (ALL), and nonneoplastic cytopenias
(cytopenias). With the support vectors and the learned hyperplane, the multiclass prediction was performed on testing sets. D, Dimensionality reduction (ie,
principal component analysis) was implemented on the specimen-level phenotype vectors and the decision score vectors of the SVM to illustrate the data
distribution on a 3-dimensional plot. Each specimen was denoted as a dot, with different icons to indicate the ground-truth diagnoses.
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5 times using different data randomly assigned to the testing set.
Accuracy (ACC) and area under the receiver operating characteristic
curve (AUC) were the evaluation metrics of performance.

Feature Selection Analysis

Cross-channel interaction was taken into account for the feature-
selection experiments. The ACC was determined for the model
by using each FC parameter alone to classify specimens into the
4 categories. The parameter that permitted the highest ACC was
then paired with the individual remaining parameters to determine
which pair provided the highest ACC. For each subsequent step,
we added the remaining parameters individually to determine the
combination with the next-highest ACC. Student t test analysis was
used to determine the significance of performance difference for
each step.

Evaluation of Cellular Composition and

Potential Quality Indicators

For comparison of misclassified specimens with those speci-
mens correctly classified using the ML model, proportions of
populations out of total events were obtained from the most
appropriate tube (Supplemental Table S2) from manual gating
of FC data: lymphocytes, T lymphocytes, and natural killer cells
(tube 4); B lymphocytes and hematogones (tube 3); granulocytes
(tube 2); monocytic cells and erythroid cells (tube 1); and blasts
(hematogones excluded) for nonneoplastic cytopenia cases (tube
1) and for APL (tube 2). Unless better isolated in another tube,
blasts were from tube 3 for B-cell ALL (B-ALL) and tube 4 for T-cell
ALL (T-ALL). The blasts for AML/not APL were from tube 1 un-
less better isolated by tube 2; monocytic cells were included with
blasts for AML/not APL that had monocytic differentiation. AML/
not APL “with monocytic differentiation” was recognized when
supported by review of the bone marrow pathology report and
other components that contributed to the final clinicopathologic
diagnosis, which were reviewed in particular whenever monocytes
were found to be 10% or more of the total events by manual FC
data analysis. Percentages were obtained from dot plots created
with BD FACSDiva v7.0, v8.0 (7/2013 - 8/2014), v8.0.1 (9/2014 -
12/2018) software (BD Biosciences) except when better isolated
using Infinicyt software, version 2.0 (Cytognos): blasts and gran-
ulocytes for AML/not APL and APL, monocytic cells for AML/not
APL, and erythroid cells for all specimens. Singlet cells were an av-
erage from the 5 tubes using FSC-A vs FSC height dot plots. Viable
cells were those not staining for 7-aminoactinomycin D.

Three potential specimen quality indicators were also compiled.
“Hypocellular BM biopsy” was defined as a bone marrow biopsy
reported as adequate for interpretation with 20% or less cellularity.
A designation of “less than optimal aspirate smears” was applied
when the pathology report indicated that the smears were “inade-
quate,” “limited,” or “suboptimal.” A “gross % blast underestimate
by FC” was recorded when the aspirate smear manual differential
blast percentage was 20% or more in the pathology report and the
% blasts by manual FC data analysis was lower by a relative differ-
ence of 40%; no assessment was made when aspirate smears were

reported as inadequate.
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Continuous variables across groups were analyzed using the
Kruskal-Wallis test, followed, when appropriate, by the Dunn mul-
tiple comparisons test. Categorical variables were analyzed using
the ¥ test and, when appropriate, the Fisher exact test. Statistical
analyses were performed using GraphPad Prism software, version
8.0.1.

RESULTS

Diagnostic Categories

FC data were originally obtained as part of the clinical evaluation
of bone marrow specimens from 531 patients with a new diagnosis
of APL (n = 32 [6.0%]), AML/not APL (n = 200 [37.7%]), ALL (n = 131
[24.7%]; B-ALL, n = 118; T-ALL, n = 13) and patients evaluated
for potential acute leukemia because of recent pancytopenia but
whose comprehensive bone marrow evaluation was negative for
hematolymphoid neoplasm (ie, nonneoplastic cytopenias, n = 168
[31.6%]). CBC data, manual differential blast percentages, % blasts
by manual FC data analysis, and potential factors associated with
specimen quality were summarized for the 4 categories [T EIN=RN.

ML Model Performance

The ML model classified FC list mode data into 4 categories, corre-
sponding to the ground-truth diagnoses [FIEV;=k]. Performance was
assessed in 5 rounds, with different data randomly held out to serve
as testing sets (Supplemental Table S3). while classification of the
wholedatasetusingall37FCparameters,includinglightscatterprop-
erties and fluorescence, demonstrated 94.2% ACC and 99.5% AUC.
For each category, the individual ACC ranged from 87.5% to 97.6%,
sensitivity ranged from 87.5% to 97.6%, and specificity ranged from

95.6% to 100.0% [FIGEEA.

Feature Selection Analysis

The ML model ACC ranged from 47.5% to 77.0% when the 37 FC
parameters were evaluated individually (Supplemental Table
S4). The parameter yielding the highest ACC was then paired
with each remaining parameter to determine which pair pro-
vided the highest ACC. Subsequent parameters were added indi-
vidually according to the ACC of the combinations (Supplemen-
tal Figure S1). Model performance improved with each step (P <
.001) up to 3 parameters (FSC-A, SSC height [SSC-H], CD117), but
no significant improvement was gained by adding more mark-
ers, and there was no significant difference in the model’s per-
formance when using the full marker set and any other number
of markers beyond the top 3. The top 3 parameters produced a
performance (ACC, 91.7%; AUC, 98.3%) similar to that achieved
for all 37 samples. The findings underscored the significant con-

tribution of light scatter properties to model performance.

Specimens Misclassified by the ML Model

A total of 31 of 531 (5.8%) specimens were misclassified. Because
numbers misclassified from one specific category into another were
low [EMEA), comparisons with correctly classified specimens were
precluded. However, a somewhat larger group of misclassified spe-

cimens (n = 16) was assembled for comparisons by combining all
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TABLE 1 Attributes of Cases According to Ground-Truth Diagnosis: CBCs, % Blasts by Manual Differentials, % Blasts by Manual Flow Cytometry Data

Analysis, and Potential Specimen Quality Indicators

Nonneoplastic
AML/Not APL APL ALL Cytopenias
Cases, No. (%) 200 (37.7) 32 (6.0) 131 (24.7) 168 (31.6)
CBC*
WBC, x10%/pL 7.8 (2.2-30.1) 2.4 (1.5-13.1) 9.5(3.7-25.8) 2.4(1.8-3.2)
Hemoglobin, g/dL 8.9 (7.9-10.0) 9.5(8.2-10.9) 8.9(7.8-10.1) 9.4(8.2-10.9)
MCV, fL 95.8 (90.6-100.9) 89.4 (86.2-92.2) 85.3(81.0-89.0) 90.6 (85.2-97.6)
Platelet count, x10%/pL 56.0 (29.0-98.2) 27.0 (14.0-57.5) 66.0 (38.0-114.5) 72 (46.0-104.0)
Manual differential, peripheral blood®
Blasts, % 27.0 (9.9-58.0) 55.0 (10.5-74.5) 48.8 (12.2-72.6) 0.0 (0.0-0.0)
Manual differential, bone marrow?
Blasts, % 58.0 (34.0-77.4) 81.0 (71.8-84.0) 90.0 (84.3-94.0) 1.0(0.6-1.8)
Flow cytometry, bone marrow®
Blasts, % 50.0 (30.8-73.2) 84.0 (73.0-87.2) 82.0 (65.6-90.0) 0.8 (0.4-1.3)
Potential specimen quality indicators, present/not present
Hypocellular bone marrow biopsy 3/185° 0/32° 1/123° 25/137%%¢
Less-than-optimal aspirate smears 40/160 3/29 28/103 25/143
Gross % blast underestimate by FC 22/173 3/29 16/114 NA

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; FC, flow cytometry, MCV, mean corpuscular volume; NA, not applicable.

“Data shown as median (25th to 75th percentiles).

“Potential quality indicators were compared between groups using % test and were significantly different only for hypocellular bone marrow biopsies (P <.0001). Fisher exact tests
revealed that hypocellular bone marrow biopsy was more common for nonneoplastic cytopenias compared with

‘AML/not APL (P <.0001),

“APL (P=.017), and

*ALL (P <.0001).

. . Dimension reduction
Confusion matrix

3
1
3 se
° ALL }- o
2 %
b .‘. -
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o
© ALL AML/ APL Cytopenias @ ALL
not APL X AML/not APL
A APL
Diagnosis Predicted by Model (Predicted Label) [ Cytopenias
Sensitivity (%) 91.6 94.0 87.5 97.6
Specificity (%) 99.0 96.7 100.0 95.6

FIGURE 2 Performance of the machine learning (ML) model for classification of acute leukemias and distinction from nonneoplastic cytopenias. The ML
model was trained to classify patients’ flow cytometry data into 4 categories corresponding to the ground-truth diagnoses: acute promyelocytic leukemia
(APL), acute myeloid leukemia (AML)/not APL, acute lymphoblastic leukemia (ALL), and nonneoplastic cytopenias (cytopenias). A, Classification accuracy
of the final ML model for each category using the whole data set was depicted by a confusion matrix; sensitivity and specificity for each predicted category
were also determined. B, Dimensionality reduction using principal component analysis was performed to depict the data output distribution of the model on
a 3-dimensional plot; the ground-truth diagnosis was denoted with different icons.

acute leukemias misclassified as nonneoplastic cytopenias (AML/
not APL,n = 9; ALL,n = 5; APL, n = 2).
The percentages of major hematolymphoid populations deter-

combined group of acute leukemias misclassified as nonneoplastic
cytopenias and the 4 groups consisting of only correctly classified spe-
cimens (Supplemental Table S2). The acute leukemias misclassified as

mined by manual FC data analysis were compared between the nonneoplastic cytopenias had lower proportions of blasts compared
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with all 3 groups of correctly classified acute leukemias (median, 16%
vs 84% [APL], 52% [AML/not APL], 84% [ALL]; P < .05 for all 3 com-
parisons). They also had higher proportions of lymphocytes compared
with the correctly classified acute leukemias (median, 30% vs 7% [APL],
11% [AML/not APL], 6% [ALL]; P < .05 for all 3 comparisons).

No significant difference was found between the distribution
for flow cytometers 1, 2, and 3 used for data acquisition for correctly
classified (63.2%, 35.2%, 1.6%) and incorrectly classified specimens
(64.5%, 35.5%, 0%).

Because rapid, accurate detection of APL is so important, obser-
vations about misclassification were specifically sought for this cate-
gory. No specimens were misclassified as APL. No APL was misclassi-
fied as ALL, but 4 of 32 (12.5%) specimens were misclassified as either
nonneoplastic cytopenias (n = 2) or AML/not APL (n = 2) [N
The 2 samples misclassified as nonneoplastic cytopenias were sim-
ilar to the larger assembled group of acute leukemias misclassified
as such because they had low proportions of blasts based on manual
FC data analysis (ie, 8% and 18%, respectively). The other 2 that were
misclassified had 70% and 87% blasts, respectively, and no obvious
reason for misclassification as AML/not APL.

Among AML/not APL cases, 58 of 200 had monocytic dif-
ferentiation (29%). There was no difference in the model’s
performance between those with or without monocytic differ-
entiation. Two of 58 with monocytic differentiation and 10 of
142 without monocytic differentiation were misclassified (ACC,
96.6 vs 92.9%; P = .5147). Both AML/not APL specimens with
monocytic differentiation were misclassified as nonneoplastic
cytopenias, and 1 was similar to the overall larger assembled
group of acute leukemias so misclassified because of a low
proportion of blasts by manual FC data analysis (16%), despite
63% blasts on the aspirate smear differential. Neither had good
reason to consider chronic myelomonocytic leukemia (CMML)
as an alternative diagnosis. Among correctly classified AML/
not APL with monocytic differentiation cases, only 1 with 20%
blasts/promonocytes was difficult to distinguish from CMML,
while another patient had been under observation for previ-
ously diagnosed CMML when he presented with 51% blasts in
the bone marrow morphologically.

Three Potential Specimen Quality Indicators

and Impact on ML Model Performance

A hypocellular bone marrow biopsy was more common for
nonneoplastic cytopenias compared with all 3 acute leuke-
mias (-], but no differences were found among the 4 categories
based on “less than optimal aspirate smears” or, among the acute
leukemia categories, based on “gross % blast underestimate by FC”
with reference to the aspirate smear manual differential.

Acute leukemias misclassified as nonneoplastic cytopenias were
more often associated with a “gross % blast underestimate by FC”
compared with correctly classified APL, AML/not APL, and ALL
(78.6% of the specimens vs 3.6%, 8.7%, and 9.2%, respectively; P <
.0001 for all 3 comparisons). Both APL specimens misclassified as
nonneoplastic cytopenias and the AML/not APL with monocytic dif-
ferentiation case with a low proportion of blasts also so misclassified
met criteria for “gross % blast underestimate by FC.”

Abnormal Populations in Addition to Acute Leukemia

Abnormal B-cell populations other than acute leukemia were de-
tected in 20 of 531 cases (3.8%). Only 1 of these specimens was
among those misclassified by the ML model. Chronic lymphocytic
leukemia/small lymphocytic lymphoma (38% of total events) and
another B-cell-lineage lymphoproliferative disorder (53% of total
events) were detected in 2 patients with AML/not APL. The latter
case was misclassified as nonneoplastic cytopenias but was also
noted to have only 9% blasts by FC. Light chain restricted B cells
(s12% of total events) suggesting monoclonal B-cell lymphocytosis
were identified in 8 patients with AML/not APL, 2 with ALL, and 8

with nonneoplastic cytopenias.

DISCUSSION

Our ML model, developed for bone marrow specimens originally
obtained to evaluate for potential new acute leukemia, demon-
strated excellent performance (ACC, 94.2%; AUC, 99.5%) to rap-
idly classify FC data into 4 categories (APL, AML/not APL, ALL,
and nonneoplastic cytopenias). The model achieved this accuracy

using the complete FC panel for new acute leukemia but also

TABLE 2 Number of Specimens Misclassified by Machine Learning Model

Correct Category, No. No. Misclassified (% of Diagnostic Category) Incorrect Classifications
AML/not APL (n = 200) 12 (6) ALL (n=13)
Nonneoplastic cytopenias (n = 9)
APL (n=32) 4(12.5) AML/not APL (n = 2)
Nonneoplastic cytopenias (n = 2)
ALL (n=131) 11 (8.4) —
B-cell lymphoblastic leukemia (n = 118) 9(7.6) AML/not APL (n = 4)
Nonneoplastic cytopenias (n = 5)
T-cell lymphoblastic leukemia (n = 13) 2 (15.4) AML/not APL (n = 2)
Nonneoplastic cytopenias (n = 168) 4(2.4) AML/not APL (n = 3)
ALL (n=1)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia.
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demonstrated similar performance with only 3 FC parameters. The
findings suggested that an ML approach could serve as an auto-
mated triage tool to rapidly identify and prioritize FC results for he-
matologic malignancies, including APL and other acute leukemias.

Computational and ML algorithms for FC data interpreta-
tion"” and morphologic image analysis' proposed specifically for
hematolymphoid disorders have been reviewed and include some
designed to assist in acute leukemia diagnosis. The potential of
morphologic image analysis for acute leukemia classification
has been demonstrated.” Using FC data, 87% of 23 algorithms
achieved greater than 97% ACC when challenged to distinguish
AML from healthy donors.”® Although that finding was published
8 years ago, adoption of computational tools in clinical labora-
tories has remained low.” Infinicyt software, supported by the
EuroFlow Consortium, has provided the computational tools
most commonly used for clinical FC testing.” Infinicyt offers par-
tially automated gating for a small number of FC panels, including
an acute leukemia orientation tube (ALOT), along with tools to
determine whether populations match those within their data-

6,21
base.

For ALOT analysis, Infinicyt recommends the subsequent
panel for full characterization (ie, AML, T-ALL, or B-ALL panel)
or indicates that a manual decision is needed. Despite multiple
other methods,”” population clustering or automated gating
alone typically requires substantial human interaction to review
populations before interpretation. However, methods to cluster
or model FC data, followed by supervised ML (SML) classifica-
tion, can provide more automated results for diagnostic category,

. . . . 112,14,24
residual disease status, or outcome prediction.™"

Our prior
study used such an approach to identify specimens with residual
AML and MDS." We adapted those methods for the current study
to detect and classify new acute leukemias.

Our method applied unsupervised representative learning with
an integrated use of generative probabilistic GMM to provide an over-
all representation of individual patient FC data and the Fisher kernel
method to express the degree of difference between patients. We then
used a supervised SVM classifier to maximize discrimination between
nonneoplastic cytopenias and 3 acute leukemia categories. In this par-
adigm, the discriminative power from the Fisher scoring—based pheno-
type vector enhanced the capacity of the linear SVM classifier. Different
methods to model clinical FC data, followed by other SML classifiers,
have been used to classify subtypes of mature B-cell neoplasms and
healthy samples” and to detect B-cell neoplasms with good accuracy,
identify specimens that need add-on markers, and show the potential
to autoverify normal results.” Zhao et al" used self-organizing maps,
followed by a deep convolutional neural network as the classifier. Ng
et al” used FC data from their B-cell screening panel as input for uni-
form manifold approximation and projection, a method related to t
distributed stochastic neighbor embedding, followed by a random for-
est classifier. Unlike our approach, the methods in those 2 studies used
dimensionality reduction of FC data with inherent loss of information.

Evaluation of each FC parameter’s contribution to model
performance in this study demonstrated improvements up to a
combination of 3 parameters (FSC-A, SSC-H, CD117) but no fur-

ther significant improvements with more. There was no significant
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AI-ASSISTED FLOW CYTOMETRY FOR ACUTE LEUKEMIAS

difference in performance when using the full set of parameters
and any number of markers beyond the top 3, which implied that
the learned SVM classifier tended to be robust and did not dramati-
cally change or overfit because of different feature dimensions. The
results illustrated the high contribution of light scatter properties
and raised the possibility that a simplified screening method for
hematologic malignancy based primarily on light scatter properties
might be feasible; however, this hypothesis remains to be explored.
Importantly, unlike a simplified screening method, the minimum
number of markers needed for an ML model to classify data could
not be the only consideration for panels intended to contribute to
definitive FC interpretations. For example, the best 3-parameter
combination in our study would be completely inadequate for a
human analyst to render an interpretation. Optimization of such
panels to be used with ML classification would need to take into
account the data laboratory professionals need to catch errors,
manage data classified into broad or indeterminate categories, and
render timely, conclusive interpretations.

Given the importance of preventing errors for patient testing, we
tried to identify features associated with risk for misclassification.
We found a low proportion of blasts and evidence that suboptimal,
hemodilute specimens contribute to misclassification of acute leuke-
mias, including 2 of the 4 misclassified APL specimens, as nonneoplastic.
Increasing the number of specimens to train the model could potentially
improve performance, particularly for the underrepresented APL cate-
gory. Augmenting model training with more acute leukemia cases with
low blast counts and/or training the model to recognize hemodilute
specimens would also have the potential to further improve perfor-
mance. Otherwise, the numbers of specimens misclassified from one
individual category into another were too low to identify commonalities
to help understand why they were misclassified. Further understand-
ing of additional factors that contribute to misclassification would be
important before implementing an ML approach clinically. Although
understanding how ML models learn to make predictions is difficult," it
is a growing area of research.”

Although our study demonstrated that an ML model could
distinguish among 3 categories of acute leukemia involving bone
marrow and nonneoplastic cytopenias, clinical laboratories en-
counter a much broader spectrum of hematologic malignancies
and specimen types. For example, 3.8% of our specimens harbored
abnormal populations beyond acute leukemia, which our model
was not trained to detect. We did not train the model to detect
or classify myeloid neoplasms other than AML, and we excluded
acute leukemias of ambiguous lineage. The model would need to be
trained to classify more categories, but an indeterminate category
could be used for less frequent conditions until sufficient specimens
were accrued for additional specific categories. An ML model would
also need to be trained for other specimen types (eg, blood, lymph
nodes, body fluids) for which it would be used.

In this study, we did not evaluate the degree of standardi-
zation needed for the model to be implemented across multiple
laboratories. For example, decision support tools available with
Infinicyt rely on strictly standardized antibody panels, speci-

. . . 6
men processing, and instrument settings.” Two aspects of our
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approach may permit sufficient flexibility for the model to be
applied across institutions. First, preprocessing the FC data
before model input includes compensation and normalization.
First, z score normalization takes into account statistical char-
acteristics (mean and SD) of the FC data and helps offset varia-
tions for light scatter and fluorescent intensities.*® Second, we
anticipate that the use of GMM to capture the phenotypic rep-
resentation for each specimen in a probabilistic manner”” may
permit us to apply our approach to those distributions derived
for similar parameters across institutions without extreme
stringency related to antibody panels, specimen processing,
and instrument settings. One of our major upcoming goals is
to obtain a large multicenter database to further evaluate these
potential solutions and determine the minimum level of stand-
ardization needed to successfully generalize our approach.

The ML model we developed demonstrated excellent perfor-
mance to rapidly classify real-world FC data into 4 categories for
patients evaluated for potential acute leukemia. It accomplished
this success with substantially fewer FC markers than currently
exist in our new acute leukemia panel. These results can be used to
help design Al-based decision support tools to address the wider
spectrum of conditions clinical laboratories encounter. Anticipating
further development and multicenter studies to evaluate the gener-
alizability of such an approach, we are optimistic that Al-assisted
decision support will lead to greater efficiency and increase patient
access to fast and accurate diagnoses for hematologic malignancies.
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